(Replying to PARENT post)
That's not true, either. For any infinite set S, the powerset 2^S is also infinite, but there is no injection from 2^S to S. Therefore, the cardinality of 2^S is bigger than the cardinality of S. You can iterate this and get a tower of arbitrarily many distinct types of infinity.
"Countable infinity" describes the cardinality of the set of natural numbers. "Uncountable infinity" describes any infinite cardinality that is not that of the natural numbers -- it just means "not countable".
> Both reals and rationals are not countable
The rationals are countable, by a diagonal construction. Take an Excel spreadsheet with rows labeled 1, 2, and so on; and columns labeled 1, 2, and so on. In every cell, write the cell's row over the cell's column as a fraction. By construction, every rational number n/m will exist in this spreadsheet, at row n and column m.
Now walk the spreadsheet in diagonals: first the first diagonal (just 1/1), then the second diagonal (1/2, 2/1), then the third (1/3, 2/2, 3/1), and so on. This yields a sequence (i.e. a mapping from naturals to ratios) where every ratio is guaranteed to appear at some finite index. But because every ratio appears in this sequence, we can go backwards, taking a rational number in reduced form and finding its index in the sequence, giving us an inverse map from rationals to naturals.
Every rational number therefore gets its own unique natural. Since this is an injection, the set of rationals must be no bigger than the set of naturals. (In fact, it's the same cardinality, but my argument is a little too imprecise to show that the rationals are no smaller than the set of naturals -- two naturals in this construction may land on the same rational number. We would fix this by just skipping ratios not in reduced form.)
(Replying to PARENT post)
There are cardinal transfinite numbers (starting at aleph-null) and ordinal transfinite numbers (starting at omega). There are infinitely many transfinite cardinals, and likewise for the ordinals. There are also other infinite numbers in mathematics, distinct from the transfinite numbers of set theory, such as infinities in the projectively and affinely extended reals, the surreals, etc
Usually, discussions of transfinite numbers assume ZFC set theory (Zermelo–Fraenkel with the axiom of choice). You also have large cardinals which only exist if you add additional axioms to ZFC (large cardinal axioms). There is a hierarchy of larger and larger large cardinals, which corresponds to the ordering of the consistency strength of the large cardinal axioms.
How many cardinals exist, in ZFC? Well, "the set of all cardinals" isn't a set in ZFC – for the same reason that ZFC lacks a universal set (that's how it avoids Russell's paradox) – so we cannot speak of which cardinal is its size. Of course, if we adopt a suitable extension of ZFC (such as proper classes), then maybe we can, but then "the cardinal measuring the number of cardinals in ZFC" wouldn't be the same type of mathematical object (category?) as the usual cardinals are.
And then I assume if you replace ZFC with some alternative set theory, such as NBG or NFU, at some point you'll get different cardinals and ordinals arising. But that's a question that has always intrigued me but I've never known the answer to. I'm sure the answer is in some graduate maths text somewhere which is going to go completely over my head.
(Replying to PARENT post)
http://www.cwladis.com/math100/Lecture5Sets.htm#:~:text=the%...
(Replying to PARENT post)
Also the rationals are countable by diagonalization.
(Replying to PARENT post)
There are only two types of infinities: countable and uncountable. Both reals and rationals are not countable